Joint modelling of binary and continuous measurements in large health surveys and its application to network analysis, frailty, and mortality in NHANES 1999-2010

Debangan Dey¹, Irina Gaynanova², Vadim Zipunnikov¹ Johns Hopkins Bloomberg School of Public Health¹, Texas A&M University²

Abstract

- Network analysis has rapidly gained popularity in neuroimaging, genomics and other scientific domains. However, a little has been done to adapt network analysis to heterogeneous measurements collected by national health surveys and biobanks.
- This is primarily due to a lack of understanding on how to jointly model multiple comorbidities, health deficits, and health biomarkers, often recorded via binary and continuous measurements. Our approach adapts a recently proposed semiparametric gaussian copula[1] that estimates a latent correlation structure of mixed type (binary and continuous) random vectors through rank-based procedure.
- After estimating joint distribution of latent continuous variables, we build a network by applying sparse inverse covariance estimation method (Graphical Lasso) to control for number of connections. We choose the optimum penalizing parameter in a way to ensure the stability of the network.
- Extending further, we propose a novel solution to jointly model outcome and predictors, impute missing data, perform dimension reduction and do prediction both on the latent and observed space. The key advantage of this approach is the combination of mixed data-type under a uniform modelling framework.
- We demonstrate this method on 47 binary and continuous variables typically included in Frailty Index (FI). Using latent principal components and network connectivities, a few weighted versions of FI are developed and compared in predicting 5-year mortality in National Health and Nutrition Examination Survey.

Framework

Definition 1:

We define a random vector $X = (X_1, ..., X_p)^t \sim \text{NPN}(0, \Sigma, f)$ if there exists a set of monotonic increasing functions $f = (f_1, f_2, \dots, f_p) \text{ such that } - f(X) = (f_1(X_1), f_2(X_2), \dots, f_p(X_p))^{t} \sim N(0, \Sigma) \text{ with } \Sigma_{jj} = 1 \forall 0 \le j \le p_1 + p_2 = p.$ NPN stands for Non-paranormal distribution defined by Liu et al[1].

Definition 2:

Suppose we have an observed vector of variables $X = (X_b, X_c)^t$, where X_b represents p_1 dimensional binary random variables and X_c represents p_2 dimensional continuous random variables. We say, $X \sim LNPN(0, \Sigma, f, C)$ if there exists a set of latent variables Z_b and a vector of constants $C = (C_1, C_2, \dots, C_{p_1})^t$ such that $X_{bj} = I(Z_{bj} > C_j)$ for $j = 1, ..., p_1$ and $Z = (X_c, Z_b) \sim NPN$ (0, Σ, f). LNPN stands for latent non-paranormal distribution.

We use a semiparametric Gaussian Copula framework to jointly model binary (clinical) and continuous (lab) measurements and recover latent underlying structures. For *i*-th subject, we observe the vector $X_i = (X_{ib}, X_{ic})$, where X_{ib} represents p_1 -dimensional binary measurements and X_{ic} represents p_2 -dimensional continuous measurements. We assume $X_1, X_2, ..., X_n \sim LNPN(0, \Sigma, f, C)$ and we have latent unobserved variables $Z_1, Z_2, \dots, Z_n \sim NPN(0, \Sigma, f)$ as defined above.

Table 1: Comparison												
$(Y = outcome, X = predictor, \hat{L} = predicted latent variable)$												
		(Traditional models)	(Joint normal models)									
1. Joint dependence structure	a) No clear paramet (like usin Correlat	r way to think, apart from getting a non- cric estimate of sample covariance matrix ng Kendall's Tau or Spearman's Rank ion).	a) We can use $\hat{\Sigma}_{XX}$ or more broadly $\hat{\Sigma}$ to define and visualize the dependence structure among covariates and also with outcome included.									
	b) No clear PCA.	r method for dimension reduction except	b) We can do dimension reduction of covariates after finding PC loadings of $\hat{\Sigma}_{XX}$ and we can later compute principal scores on the latent space.									
2. Individual associations	a) We can compon	do logistic regression of Yon individual ents of X one by one.	a) We can use the specific elements of $\hat{\Sigma}_{YX}$ to denote the association of <i>Y</i> wit corresponding variable.									
	b) Measure	es of fit: AUC or residual deviance.	b) Measures of fit: Latent R-square $(\hat{\Sigma}_{YX}[k]^2)$ for <i>k</i> -th covariate.									
3. Global association	a) Global le	ogistic regression model.	We can define latent β as $\beta_L = \hat{\Sigma}_{YX} \Sigma_{XX}^{-1}$									
	b) Measure	es of fit: AUC or residual deviance.	and use it as a coefficient on <i>L</i> to fit global association model. =(or) We can fit global logistic regression of <i>Y</i> on \hat{L} .) Latent R-square: $\Sigma_{YX}\Sigma_{XX}^{-1}\Sigma_{XY}$ (or) AUC or residual deviance from doing logistic regression of Y on \hat{L} .									
4. Missing data												
imputation	No clear way means or tal	y, except we impute by corresponding the only complete cases.	finding and computing \hat{L} .									
5. Prediction on new data	Prediction af regression m	ter fitting Yon X in a traditional logistic nodel.	Compute \hat{L} from new vector of X using population level assumptions.									
			predict Y.									
		Table 2: Figure terminology										
		Details	Method									
Latent coefficie	ent	Latent, uses joint dependency of measurements	Perform linear regression on latent space and obtain latent coefficient as $\beta_L = \hat{\Sigma}_{VV} \hat{\Sigma}_{VV}^{-1}$									
Logistic coeffic	ient	Observed, uses joint dependency of measurements	Obtained from logistic regression of <i>Y</i> on <i>X</i> after mean-imputing and scaling <i>X</i> .									
Latent individual co	rrelation	Latent, uses measurements one-by-one	For each covariate, get the latent correlation with outcome (mortality), i.e. the vector $\hat{\Sigma}_{YX}$.									
Column norm of latent matrix	covariance	Latent, uses joint dependency of measurements	Euclidean norm of columns of $\hat{\Sigma}_{XX}$									
Column norm of latent matrix	precision	Latent, uses joint dependency of measurements	Euclidean norm of columns of $\hat{\Sigma}_{XX}^{-1}$.									
AUC		Observed, uses measurements one-by- one	AUC from fitting models of logistic regression of Y on a single measurement									
p-value		Observed, uses measurements one-by- one	-log ₁₀ (p-value) from fitting models of logistic regression of Y on a single measurement.									
Mutual Informat	lion	Observed, uses measurements one-by- one	Mutual information of <i>Y</i> with every component of <i>X</i> .									
Variance explai	ned	Latent, uses measurements one-by-one	The latent R^2 value $(\hat{\Sigma}_{YX}^2)$.									

(i) Direct (directly connected to mortality node), (ii) Indirect (connected with a node which is connected to mortality), (iii) No (not in class (i) and (ii)).

We consider a list of informative measures and diagnostics listed in **Table 2** and the number of connections of a node, group them into connection categories (Fig. 3) and variable types (Fig. 4), visualize them in a scatterplot matrix with rank correlation values printed in the upper half.

		Figure 4: Cross-correlation of comparison grouped by connections															
riance blained ingle riable odel)	Туре			Latent space regression coefficient	Logistic coefficient (joint model)	Latent correlation (single variable)	Column norm of latent covariance matrix	Column norm of latent precision matrix	AUC (single variable model)	Mutual Information (single variable model)	p-value (single variable model)	p-value (joint logistic model)	Variance explained (single variable model)	Degree of deficit nodes in covariate only network	Connection Type		
254 444	÷	Latent space regression coefficient			Cor : 0.853 N: 0.924 1: 0.689 D: 0.846	Cor : 0.404 N: 0.818 I: 0.0441 D: 0.517	Cor : -0.00231 N: -0.222 I: -0.181 D: 0.524	Cor : 0.0481 N: -0.1 I: -0.201 D: 0.755	Cor : 0.257 N: 0.439 I: -0.0613 D: 0.343	Cor : 0.26 N: 0.104 I: -0.0343 D: 0.371	Cor : 0.273 N: 0.437 I: 0.00735 D: 0.476	Cor : 0.336 N: 0.401 I: -0.252 D: 0.245	Cor : 0.291 N: 0.503 I: 0.0441 D: 0.378	Cor : 0.00961 N: -0.258 1: -0.247 D: 0.431	≑≑Ŧ	Latent space regression coefficient	
: 0.393 225 625	•	Logistic coefficient (joint model)		0.2 - 0.0 - 0.2 - 0.2 -		Cor : 0.517 N: 0,814 I: 0.51 D: 0.385	Cor : 0.103 N: -0.168 I: 0.284 D: 0.35	Cor : 0.0834 N: -0.0898 I: 0.027 D: 0.622	Cor : 0.421 N: 0.426 I: 0.434 D: 0.343	Cor : 0.338 N: 0.139 I: 0.461 D: 0.42	Cor : 0.41 N: 0.476 I: 0.517 D: 0.392	Cor : 0.399 N: 0.449 I: -0.118 D: 0.49	Cor : 0.393 N: 0.474 I: 0.51 D: 0.238	Cor : 0.118 N: -0.219 I: 0.226 D: 0.145	⊨ ≑	Logistic coefficient (joint model)	
: 0.902 232 998		Latent correlation (single variable model)		0.4 - 0.2 - 0.0 -			Cor: 0.838 N: 0.0258 I: 0.909 D: 0.888	Cor : 0.684 N: -0.102 I: 0.672 D: 0.881	Cor : 0.582 N: 0.34 I: 0.855 D: -0.049	Cor : 0.169 N: -0.168 I: 0.953 D: 0.028	Cor : 0.832 N: 0.49 I: 0.963 D: 0.622	Cor : 0.0191 N: 0.49 I: -0.0319 D: -0.21	Cor : 0.902 N: 0.56 I: 1 D: 0.958	Cor : 0.829 N: -0.167 I: 0.78 D: 0.792	₽ ₽ 	Latent correlation (single variable)	
: 0.835 236 921	•	Logistic coefficient (single variable model)	0.6 Type	2 -			h	Cor : 0.847 N: 0.664 I: 0.752 D: 0.825	Cor : 0.476 N: -0.203 I: 0.907 D: 0.035	Cor : 0.014 N: -0.379 I: 0.941 D: 0.049	Cor : 0.747 N: 0.032 I: 0.929 D: 0.678	Cor : -0.206 N: -0.253 I: -0.0417 D: -0.238	Cor : 0.8 N: 0.0155 I: 0.909 D: 0.846	Cor : 0.965 N: 0.783 I: 0.91 D: 0.905		Column norm of latent covariance matrix	
or : 0.8 179 863	_□	Column norm of latent covariance matrix		4 - 2 -					Cor : 0.36 N: -0.0279 I: 0.571 D: 0.0769	Cor : 0.0286 N: -0.176 I: 0.627 D: 0.105	Cor : 0.587 N: 0.123 I: 0.605 D: 0.587	Cor : -0.247 N: -0.329 I: -0.105 D: 0.042	Cor : 0.625 N: 0.0031 I: 0.672 D: 0.804	Cor : 0.806 N: 0.568 I: 0.623 D: 0.7		Column norm of latent precision matrix	
: 0.625 168 655		Column norm of latent precision matrix		O.60 O.60 O.60 O.60 O.60 O.60 N: 0.866 N: 0.866 N: 0.953 I: 0.946 N: 0.946 0.55 0.55 0.57 0.0972 D: 0.972 D: 0.699	Cor : 0.891 N: 0.866 I: 0.946 D: 0.699	Cor : 0.394 N: 0.662 I: -0.0441 D: 0.699	Cor : 0.769 N: 0.882 I: 0.855 D: 0.0769	Cor : 0.468 N: -0.205 I: 0.878 D: -0.053	<u></u> <u> </u>	model) AUC • No							
: 0.769 986 858		AUC (single variable model)	• Binary	0.10 - 0.05 - 0.00							Cor : 0.488 N: 0.243 I: 0.993 D: 0.706	Cor : 0.406 N: 0.259 I: -0,1 D: 0.671	Cor : 0.368 N: 0.224 I: 0.953 D: 0.133	Cor : 0.031 N: -0.288 I: 0.854 D: -0.0565	• •	Mutual Information (single variable model)	IndirectDirect
636 955		Mutual Information (single variable)										Cor : 0.231 N: 0.666 I: -0.0711 D: 0.357	Cor : 0.957 N: 0.872 I: 0.963 D: 0.727	Cor : 0.718 N: -0.0274 I: 0.828 D: 0.519	<u>_</u>	p-value (single variable model)	
: 0.957 925 963		p-value (single variable model)				8°°		* **	-8 -8 -8		6°°	h	Cor : 0.117 N: 0.672 I: -0.0319 D: -0.112	Cor : -0.223 N: -0.269 I: -0.0443 D: -0.459		p-value (joint logistic model)	
: 0.117 768 209		p-value (joint logistic model)							Cor : 0.773 N: -0.0959 I: 0.78 D: 0.742	Cor : 0.773 0.0959 1: 0.78 : 0.742	Variance explained (single variable model)						
		Variance explained (single variable model)					8 8 . 3 8		9 6 8 8 9 6 6 8 9 6 6 8		3				•	Degree of deficit nodes in covariate only network	
uļ		Туре				وويل. است. ا	 	 		U						Connection Type	
0.10 0.17	Ċ B			-0.25 0.03 0.30	-0.24 -0.04 0.17	-0.15 0.09 0.34	0.75 1.56 2.36	1.20 2.70 4.21	0.52 0.57 0.62	0.02 0.05 0.09	16.81 50.35 83.88	3.27 9.78 16.29	0.03 0.10 0.17	3.5 10.5 17.5	N I D		

2. Farrell, Spencer G., Arnold B. Mitnitski, Olga Theou, Kenneth Rockwood, and Andrew D. Rutenberg. "Probing the network structure of health deficits in human aging." *Physical Review E*98, no. 3 (2018): 032302.