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• Network analysis has rapidly gained popularity in neuroimaging, genomics and other scientific domains. However, a 
little has been done to adapt network analysis to heterogeneous measurements collected by national health surveys 
and biobanks.

• This is primarily due to a lack of understanding on how to jointly model multiple comorbidities, health deficits, and 
health biomarkers, often recorded via binary and continuous measurements. Our approach adapts a recently proposed 
semiparametric gaussian copula[1] that estimates a latent correlation structure of mixed type (binary and continuous) 
random vectors through rank-based procedure. 

• After estimating joint distribution of latent continuous variables, we build a network by applying sparse inverse 
covariance estimation method (Graphical Lasso) to control for number of connections. We choose the optimum 
penalizing parameter in a way to ensure the stability of the network. 

• Extending further, we propose a novel solution to jointly model outcome and predictors, impute missing data, perform 
dimension reduction and do prediction both on the latent and observed space. The key advantage of this approach is the 
combination of mixed data-type under a uniform modelling framework. 

• We demonstrate this method on 47 binary and continuous variables typically included in Frailty Index (FI). Using latent 
principal components and network connectivities, a few weighted versions of FI are developed and compared in 
predicting 5-year mortality in National Health and Nutrition Examination Survey. 

Joint modeling of outcome and predictor

• A binary (0/1) outcome of interest !" (5 year mortality status). 
• We treat (!", %") as our new vector of interest and conduct steps 1, 2, 3 to jointly model the outcome and the 

covariates (binary and continuous measurements). 
• Instead of imposing assumptions on the distribution of !|%,we assume that jointly  !, % ~ )*+*(0, Σ, ., /). 

As a consequence, we can get the estimate of latent correlation matrix –

0Σ =
0Σ22 0Σ23
0Σ32 0Σ33

We compare how our approach differs from traditional modelling approaches in Table 1. 

Results Conclusion and discussion
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Framework

Definition 1: 
We define a random vector % = %4,… , %6

7 ~ NPN (0, Σ, .) if there exists a set of monotonic increasing functions 

. = .4, .8, … , .6 such that - . % = .4 %4 , .8 %8 ,… , .6 %6
7
~ *(0, Σ)with Σ99 = 1 ∀ 0 ≤ = ≤ >4 + >8 = >. 

NPN stands for Non-paranormal distribution defined by Liu et al[1]. 

Definition 2: 
Suppose we have an observed vector of variables % = %@, %A 7, where %@ represents >4dimensional binary random 
variables and %A represents >8 dimensional continuous random variables. We say,  % ~ )*+*(0, Σ, ., C) if there 
exists a set of latent variables C@ and a vector of constants / = /4, /8, … , /6D

7 such that %@9 = E (C@9 > /9) for 
= = 1,… . , >4 and  C = %A, C@ ~ *+* (0, Σ, .). LNPN stands for latent non-paranormal distribution. 

We use a semiparametric Gaussian Copula framework to jointly model binary (clinical) and continuous (lab) 
measurements and recover latent underlying structures. For H-th subject, we observe the vector IJ = KLM, KLN , 
where KLM represents >4-dimensional binary measurements and KLN represents >8-dimensional continuous 
measurements. We assume KO, KP,… , KQ ~ )*+*(0, Σ, ., /) and we have latent unobserved variables 
RO, RP, … , RQ ~ *+* 0, Σ, . as defined above.  
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Aspects Observed space
(Traditional models)

Latent space
(Joint normal models)

1. Joint dependence 
structure

a) No clear way to think, apart from getting a non-
parametric estimate of sample covariance matrix 
(like using Kendall’s Tau or Spearman’s Rank 
Correlation).

b) No clear method  for dimension reduction except 
PCA.

a) We can use 0Σ33 or more broadly 0Σ to 
define and visualize the dependence 
structure among covariates and also 
with outcome included.

b) We can do dimension reduction of 
covariates after finding PC loadings of 
0Σ33 and we can later compute principal 
scores on the latent space. 

2. Individual 
associations

a) We can do logistic regression of !on individual 
components of % one by one.

b) Measures of fit: AUC or residual deviance. 

a) We can use the specific elements of  
0Σ23 to denote the association of ! with 
corresponding variable.

b) Measures of fit: Latent R-square 
(0Σ23 S 8) for S-th covariate.

3. Global association a) Global logistic regression model.

b) Measures of fit: AUC or residual deviance.

a) We can define latent T as TU = 0Σ23Σ33V4
and use it as a coefficient on 0) to fit 
global association model. 
=(or)
We can fit global logistic regression of 
! on 0).

b) Latent R-square: Σ23Σ33V4Σ32
(or)
AUC or residual deviance from doing 
logistic regression of  Y on 0).

4. Missing data 
imputation No clear way, except we impute by corresponding 

means or take only complete cases. 
We do imputation naturally as a process of 
finding and computing 0).

5. Prediction on new 
data Prediction after fitting !on % in a traditional logistic 

regression model. 

Compute 0) from new vector of % using 
population level assumptions.

Use one of the fitted models in (3.) to 
predict !.

Details Method
Latent coefficient Latent, uses joint dependency of 

measurements
Perform linear regression on latent space 

and obtain latent coefficient as TU =
0Σ23 0Σ33V4

Logistic coefficient Observed, uses joint dependency of 
measurements

Obtained from logistic regression of ! on 
% after mean-imputing and scaling %.

Latent individual correlation Latent, uses measurements one-by-one For each covariate, get the latent 
correlation with outcome (mortality), i.e. 

the vector 0Σ23.
Column norm of latent covariance 

matrix
Latent, uses joint dependency of 

measurements
Euclidean norm of columns of 0Σ33

Column norm of latent precision 
matrix

Latent, uses joint dependency of 
measurements

Euclidean norm of columns of 0Σ33V4.

AUC Observed, uses measurements one-by-
one

AUC from fitting models of logistic 
regression of ! on a single measurement. 

p-value Observed, uses measurements one-by-
one

-log10(p-value) from fitting models of 
logistic regression of ! on a single 
measurement. 

Mutual Information Observed, uses measurements one-by-
one

Mutual information of ! with every 
component of %.

Variance explained Latent, uses measurements one-by-one The latent W8 value (0Σ238 ).

Data: 

• We combined data on 30 continuous measurements (lab) and 32 binary measurements (clinical) from 1999-
2010 cohorts of National Health and Nutrition Examination Survey (NHANES) for everyone aged 60+. 

• We removed subjects with more than 20% missing information and out of the remaining, 8947 subjects 
satisfied our criteria of 5-year follow-up on mortality. 

• To tackle multicollinearity, we chose 15 continuous variables out of 30 in a forward selection way of explaining 
most variability. 

Below we visualize the latent dependence structure of the deficits through the heatmap of the estimated latent 
correlation matrix  (Fig. 1) and the network estimated through the graphical lasso approach (using STARS criteria for 
stability.

From the network, we group the frailty variables into three classes –
(i) Direct (directly connected to mortality node), 
(ii) Indirect (connected with a node which is connected to mortality), 
(iii) No (not in class (i) and (ii)). 

We consider a list of informative measures and diagnostics listed in Table 2 and the number of connections of a 
node, group them into connection categories (Fig. 3) and variable types (Fig. 4), visualize them in a scatterplot 
matrix with rank correlation values printed in the upper half.

Table 1: Comparison 
(Y = outcome, X = predictor, 0)=predicted latent variable)

Table 2: Figure terminology

Figure 1: Heatmap of latent correlation 

Figure 4: Cross-correlation of comparison grouped by connections

Figure 2: Network of deficits

A. Insights from joint modelling

• A strong correlation between individual latent correlation with the coefficient of a single variable logistic 
regression model. 

• A strong linear association between column norms of 0Σ33 and the measurement specific correlation with 
outcome (mortality), specifically for binary (clinical) measurements. 

• The higher the column norm of a specific measurement, the more we expect it to be related to other 
measurements and thus more relevant to the outcome.

• A strong correlation between the degree of a node in the network and latent correlation with mortality can 
substantiate the hypothesis that the more connected is the node to other nodes, the more related will it 
be to mortality. Farell et al [2] based their simulations on a similar hypothesis and analyzed simulated 
network scenarios in frailty deficits. 

• This gives us understanding of how intra-dependency of covariates can influence association with 
outcome and how to filter out redundancy. 

B. Improvement of Frailty Index (FI) 

• Current approach: First binarize the continuous measurements (lab) to get clinical deficit indicators then 
define Frailty Index (FI)  as the proportion of deficits accumulated among a set of measured binary deficits.

• Our approach: Do principal component analysis on the latent correlation matrix and define principal 
scores based on the predicted latent measurements. (Modified FI) 

Advantages – Takes into account the dependence among measurements and leads us to the direction of 
the most variability among subjects. 

Figure 5: AUC comparison of Latent PC vs FI
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Figure 3: Cross-correlation of comparison grouped by variable types
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