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Introduction: Multivariate spatial data

• Most spatial data collection in climatology, forestry, environmental health target
multiple variables of interest.

• The goal is to estimate associations over spatial locations for each variable and those
among the variables.

• Typical marginal spatial regression model:

yi(s) = xi(s)Tβi + wi(s) + εi(s) , i = 1, 2, . . . , q, s ∈ D (1)

1. q outcomes measured at each location s.
2. xi(s) is a pi × 1 vector of predictors.
3. εi(s)

ind∼ N(0, τ2i ) is the random noise in outcome i .

J o h n s H o p k i n s B l o o m b e r g S c h o o l o f P u b l i c H e a l t h GGP: Dey, Datta, Banerjee 12–08–2021 2



Introduction: Multivariate spatial data

• Most spatial data collection in climatology, forestry, environmental health target
multiple variables of interest.

• The goal is to estimate associations over spatial locations for each variable and those
among the variables.

• Typical marginal spatial regression model:

yi(s) = xi(s)Tβi + wi(s) + εi(s) , i = 1, 2, . . . , q, s ∈ D (1)

1. q outcomes measured at each location s.
2. xi(s) is a pi × 1 vector of predictors.
3. εi(s)

ind∼ N(0, τ2i ) is the random noise in outcome i .

J o h n s H o p k i n s B l o o m b e r g S c h o o l o f P u b l i c H e a l t h GGP: Dey, Datta, Banerjee 12–08–2021 2



Introduction: Multivariate Gaussian Processes
• w(s) = (w1(s),w2(s), . . . ,wq(s))T is modeled as a zero-centred multivariate Gaussian

process (GP).
• The cross-covariance is a matrix-valued function

C = (Cij) : D ×D 7→ Rq×q with Cij(s, s ′) = Cov(wi(s),wj(s ′))
• C must ensure that for any finite set of locations S = {s1, . . . , sn}, the nq × nq matrix

C(S,S) = (C(si , sj)) is positive definite.
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• The cross-covariance is a matrix-valued function

C = (Cij) : D ×D 7→ Rq×q with Cij(s, s ′) = Cov(wi(s),wj(s ′))
• C must ensure that for any finite set of locations S = {s1, . . . , sn}, the nq × nq matrix

C(S,S) = (C(si , sj)) is positive definite.

Our contribution:
Highly-multivariate setting with the number
of dependent outcomes (q), possibly, in the
tens or hundreds at each spatial location.
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Motivation
• Most of the research attention is on with massive number of locations (large n) so far

while the highly multivariate setting fosters separate computational issues.

• Likelihoods for popular cross-covariance functions, such as the the multivariate Matérn,
involve O(q2) parameters, and O(q3) floating point operations (flops).

• Optimizing over or sampling from high-dimensional parameter spaces is inefficient even
for modest values of n.

• Illustrations of multivariate Matérn models have typically been restricted to
applications with q ≤ 5. [GKS10, AGS12]
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Our approach

• Can we use the graphical structure between variables in our advantage?

• How can we define a graph between component processes of a multivariate Gaussian
processes?

• Can we preserve the marginal distributions of the component processes in the process?
• How does the graph dictate the cross-covariances between pairs of variables?
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Stitching Prereqs: Process-level conditional independence
Let V = {1, . . . , q}, B ⊂ V and wB(D) = {wk(s) : k ∈ B, s ∈ D}.

Two processes wi(·) and wj(·) are conditionally independent given the processes
{wk(·) | k ∈ V \ {i , j}} if -

Cov(ziB(s), zjB(s ′)) = 0 for all s, s ′ ∈ D and B = V \ {i , j},
where zkB(s) = wk(s)− E[wk(s) |σ({wj(s ′′) : j ∈ B, s ′′ ∈ D})].
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Stitching Prereqs: Graphical Gaussian Processes
A q × 1 GP w(·) is a Graphical Gaussian Process (GGP) with respect to a graph
GV = (V,EV) when the univariate GPs wi(·) and wj(·) are conditionally independent for
every (i , j) /∈ EV . We denote such processes as GGP(GV).

Theorem
(a) There exists a unique q × 1 GGP(GV) w(·) with cross-covariance function

M(h) = (Mij(h)) such that Mij(h) = Cij(h) for i = j and for all (i , j) ∈ EV ;
(b) If F̃ (ω) denotes the SDM of w(·) and F is the set of SDMs of all possible GGP(GV),

then
F̃ (·) = argminK(·)∈F

∫
ω

dKL(F (ω)‖K(ω))dω ,

where dKL(F‖K) = tr(K−1F ) + log det(K) denotes the Kullback-Leibler divergence
between two positive definite matrices F and K.
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Stitching: Can we get the optimal GGP?
Given any GV and a cross-covariance function C , we seek a multivariate GP w(·) that -
(i) exactly preserves the marginal distributions specified by C , i.e., wi(·) ∼ GP(0,Cii) ∀i ,
(ii) is a GGP, i.e., satisfies process-level conditional independence as specified by the GV ,
(iii) exactly or approximately retains the cross-covariances specified by C for pairs of

variables included in the graph GV , i.e., for (i , j) ∈ EV , Cov(wi(s),wj(s ′)) ≈ Cij(s, s ′).
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Stitching: Visulization
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Figure: Stitching Gaussian Processes.
Left: Realizations of 4 univariate GPs.
Right: Realization of a multivariate (4-dimensional) GGP created by stitching together the 4
univariate GPs from the left figure using the strong product graph over the 4 variables and 3
locations.
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Stitching: Sparse graph between variables

Figure: Left: GGP with complete graph (full multivariate GP), Right: GGP with path graph between
variables.

4 node colors represent 4 variables. We use blue lines for edges between locations of same variable,
green for edges between different variables at same site, gray for edges between different variables at
different locations.
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Stitching: The story

• We begin our construction on L, a finite, but otherwise arbitrary, set of locations in D
(the set of 3 locations in previous slide).

• We stitch together the variables at the 3 locations in L such that there is a thread
(edge) between two variable-location pairs if and only if there is an edge between the
two variables in the graph

• We then stitch each of the remaining surfaces independently so that they have the
same distribution as the univariate surfaces from the left panel and preserves the
graphical model at the process-level.
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Stitching: The math
To fulfill our three requirements, we model w(L) ∼ N(0,M(L,L)) seeking a p.d. matrix
M(L,L) such that
(a) Mii(L,L) = Cii(L,L) for all i = 1, . . . , q, to satisfy (i),
(b) (M(L,L)−1)ij = 0 for all (i , j) /∈ EV to satisfy (ii),
(c) Mij(L,L) = Cij(L,L) for all (i , j) ∈ EV , to satisfy (iii).

Existence of such a matrix M(L,L) is guaranteed by Dempster’s seminal result [Dem72] in
covariance selection problems.

Extend it to infinite-dimensional GP [BGFS08, FSBG09]-
(Predictive process + Independent residual process)

wi(s) = w∗
i (s) + zi(s) = Cii(s,L)Cii(L,L)−1wi(L) + zi(s) for all s ∈ D \ L , (2)
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Stitching: What we achieve

Theorem
Given a cross-covariance function C and an inter-variable graph GV , stitching creates a
valid multivariate GGP w(·) with a valid (p.d.) cross-covariance function M such that:
(a) wi(·) ∼ GP(0,Cii) , i.e., Mii(s, s ′) = Cii(s, s ′) for all s, s ′ ∈ D and for each

i = 1, . . . , q,
(b) w(·) is a GGP(GV) on D,
(c) if (i , j) ∈ EV , then Mij(s, s ′) = Cij(s, s ′) for all s, s ′ ∈ L.

Stitching produces a multivariate GP w(·) that exactly satisfies the first two conditions
sought in optimal GGP. Condition (iii) is satisfied exactly on L and approximately on D \ L
for the stitched GP.
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Application: Multivariate Matérn
The isotropic multivariate Matérn cross-covariance function on a d-dimensional domain is
Cij(s, s ′) = σijHij(‖s − s ′‖), where Hij(·) = H(· | νij , φij), H being the Matérn correlation
function [AGS12].
To ensure a valid multivariate Matérn cross-covariance function, it is sufficient to constrain
the intra-site covariance matrix Σ = (σij) to be of the form (Theorem 1 of [AGS12]).

σij = bij
Γ( 1

2
(νii+νjj+d))Γ(νij)

φ
2∆A+νii+νjj
ij Γ(νij+

d
2
)

where ∆A ≥ 0, and B = (bij) > 0, i.e., is p.d. (3)

This is equivalent to Σ being constrained as Σ = (B � (γij))
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Multivariate Matérn: Computational consideration for stitching

• Stitching needs to constrain B = (bij) to be p.d. on an O(q2)-dimensional parameter
space.

• Searching in such a high-dimensional space is difficult for large q and verifying positive
definiteness of B incurs an additional cost of O(q3) flops.

• Evaluating w(L) ∼ N(0,M(L,L)) involves matrix operations for the nq × nq matrix
M(L,L). While the precision matrix, M(L,L)−1, is sparse because of GV , its
determinant is usually not available in closed form and the calculation can become
prohibitive even for small n.
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Mutivariate Graphical Matérn: Decomposable graphs

• Considering only on decomposable graphs factorizes the likelihood and reduce
computational complexity.

• If the decomposable graph GV has a perfect clique sequence {K1,K2, · · · ,Kp} with
separators {S2, . . . , Sm}, then the GGP likelihood on L can be decomposed as

fM(w(L)) = Πp
m=1fC(wKm(L))

Πp
m=2fC(wSm(L))

, (4)

• the precision matrix of w(L) satisfies [Lau96]

M(L,L)−1 =

p∑
m=1

[C−1
[Km�GL]

]V×L −
p∑

m=2

[C−1
[Sm�GL]

]V×L , (5)
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Mutivariate Graphical Matérn: Decomposable graphs
Table: Properties of any q-dimensional multivariate Matérn GP of [GKS10] or [AGS12] and a
multivariate graphical Matérn GP stitched using a decomposable graph GV with largest clique size
q∗ (typically � q), length of perfect ordering p, and maximal number of cliques p∗ sharing a
common vertex.

Model attributes Multivariate Matérn Multivariate Graphical Matérn
Number of parameters O(q2) O(|EV |+ q)
Parameter constraints O(q3) O(p∗(q∗3)) (worst case)
Storage O(n2q2) O(pn2q∗2) (worst case)
Time complexity O(n3q3) pn3q∗3 (worst case)
Conditionally independent processes No Yes
Univariate components are Matérn GPs Yes Yes
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Implementations

• Known graph: We implement a chromatic Gibbs sampler which uses the graph
coloring to facilitate parallel simulation of both the latent spatial processes and
correlation parameters (bij) respectively.

• Unknown graph: We augment the sampler above with a reversible jump MCMC
sampler[BL13] which moves between junction trees[GT13] in the graph spaces to infer
about the graphs.
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Simulations: Competing models

(a) PM: Parsimonious Multivariate Matérn of [GKS10];
(b) MM: Multivariate Matérn of [AGS12].
(c) GM: Graphical Matérn (GGP on the latent process, stitched using multivariate Matérn

model (b)).
All models consider νij = νii = νjj =

1
2 .
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Simulation: Scenario

Table: Different simulation scenarios considered for the comparison between methods.

Set q Graph GV B Nugget Locations Data model Fitted models
1A 5 Gem (Figure below) Random No Same location for all variables GM GM, MM, PM
1B 5 Gem (Figure below) Random No Same location for all variables MM GM, MM, PM
2A 15 Path bi−1,i = ρi Yes Partial overlap in locations for variables GM GM, PM
2B 15 Path bi−1,i = ρi Yes Partial overlap in locations for variables MM GM, PM
3A 100 Path bi−1,i = ρi Yes Partial overlap in locations for variables GM GM
3B 100 Path bi−1,i = ρi Yes Partial overlap in locations for variables MM GM
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Simulation: Results

(a) Set 1B (b) Set 1B

Figure: Performance of graphical Matérn under mis-specification - (a): Estimates of the
edge-specific cross-covariance parameters for the set 1B. The pink lines indicate true parameter
values. (b): Median RMSPE for GM, MM, PM and Independent GP model for Set 1B.
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Simulation: Results

(a) Set 2B (b) Set 3B

Figure: Performance of graphical Matérn under mis-specification: (a) and (b): Estimates of the
cross-covariance parameters σijφij = Γ(1/2)bij , (i , j) ∈ EV for the sets 2B and 3B respectively. The
pink lines indicate true parameter values.
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Simulation: Unknown graph

(a) Posterior edge selection probabilities for Set
2A.

(b) Cross-covariance parameter estimates for
Set 2A while estimating the unknown graph

Figure: Performance of GGP with unknown graph for Set 2A. Blue edges denote the true edges and
red denotes the non-existent edges. Edges are weighted proportional to the estimated posterior
selection probabilities. Horizontal pink lines indicate the true values.
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Data analysis: Spatio-temporal modelling of PM2.5

• We model daily levels of PM2.5 measured at monitoring stations across 11 states of
the north-eastern US and Washington DC.

• Duration is a three month period from February, 01, 2020, until April, 30th, 2020.

• We selected n = 86 stations with at least two months of measured data for both 2020
and 2019.

• The daily 2019 PM2.5 data treated as a baseline covariate for the 2020 PM2.5 levels.
• Meteorological variables such as temperature, barometric pressure, wind-speed and

relative humidity are adjusted as covariates.
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Data Analysis: results

(a) Prediction performance for full analysis (b) Estimates of time-specific
cross-correlations
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(c) Average residual surfaces
Figure: PM2.5 analysis: (a) Daily RMSPE for the 6 fortnightly analyses, (b) Daily RMSPE for the
full analyses, (c) Estimates of the time-specific process variances for the full analysis, (d) Estimates
and credible intervals of the cross-correlation parameters rt,t−1 (corresponding to the
cross-covariances bt,t−1), (e) Estimates of the residual spatial processes from GM (after adjusting
for covariates) between first two weeks of February and last two weeks of April.
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Data analysis: Spatio-temporal modelling of PM2.5

• We model daily levels of PM2.5 measured at monitoring stations across 11 states of
the north-eastern US and Washington DC.

• Duration is a three month period from February, 01, 2020, until April, 30th, 2020.
(q = 89)

• We selected n = 86 stations with at least two months of measured data for both 2020
and 2019.

• The daily 2019 PM2.5 data treated as a baseline covariate for the 2020 PM2.5 levels.
• Meteorological variables such as temperature, barometric pressure, wind-speed and

relative humidity are adjusted as covariates.
• Neither Parsimonious Matern or Multivariate Matern couldn’t be fit for full data as

they involve 892/2 ≈ 4000 cross-covariance parameters and 8000× 8000 matrix
computations.
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Data Analysis: results
We compare GGP with the spatial dynamic linear model (SpDynLm) in [FBG12], (doesn’t
have autocorrelation parameters and assumes increasing variance with time).

(a) Prediction performance for
full analysis

(b) Estimates of time-specific
cross-correlations

Figure: PM2.5 analysis: (a) Daily RMSPE for the full analyses, (b) Estimates and credible intervals
of the cross-correlation parameters rt,t−1 (corresponding to the cross-covariances bt,t−1)
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Data Analysis: Results
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(a) Average residual surfaces (b) Density of residual spatial
processes

Figure: PM2.5 analysis: (a) Estimates of the residual spatial processes from GM (after adjusting for
covariates), (b) Density of residual spatial process values (across locations) for two different time
periods
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Summary

• Existence, uniqueness, and optimality of graphical Gaussian Processes (GGP) with
process-level conditional independence.

• Stitching prescribes a practical construction of this Optimal GGP.
• Decomposable graph assumption reduces parameter space, computational complexity

and work for tens or hundreds of variables.
• A recipe for unknown graph estimation for moderately large number of variables

(q = 15). Future work would aim higher q.
• We can extend it to spatial factor models, spatial time-series, asymmetric or

non-stationary processes.
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Questions?

Thank you!
Preprint: https://arxiv.org/pdf/2009.04837.pdf

Email: ddey1@jhu.edu
Twitter: debangan07
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